CLINICAL UPDATE ON K-RAS TARGETED THERAPY IN GASTROINTESTINAL CANCERS

S. PANT, 1 J. HUBBARD, 2 E. MARTINELLI, 3 AND T. BEKAII-Saab 4

SELECTED HIGHLIGHTS

1 Department of Investigational Cancer Therapeutics and GI Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA;
2 Mayo Clinic, Rochester, Minnesota, USA;
3 Department of Precision Medicine, Università degli Studi della Campania L Vanvitelli, Naples, Italy;
4 Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
Please note:

The views expressed within this presentation are the personal opinions of the authors. They do not necessarily represent the views of the authors’ academic institution or the rest of the GI CONNECT group.
• KRAS-mutant pancreatic and colorectal cancer is common and remains very difficult to target
• Direct inhibition of K-Ras has been demonstrated in preclinical studies, but the path to the clinic is likely to be long
• Targeting signalling pathways downstream of Ras has been largely unsuccessful
• Combining MEK inhibitors with novel targeted agents may improve efficacy
• Immunotherapy has shown clinical promise in KRAS-mutant gastrointestinal cancers
BACKGROUND

• Ras proteins are small guanosine triphosphatases (GTPases) with a key role in regulating cell proliferation and survival\(^1\)
• The \textit{RAS} gene has three isoforms: \textit{HRAS}, \textit{NRAS} and \textit{KRAS}.\(^2\) Activating \textit{KRAS} mutations occur in 57\% of pancreatic and 33\% of colon cancers (COSMIC database).\(^2\)
• \textit{KRAS} mutations are associated with non-response to anti-epidermal growth factor receptor therapy in colorectal cancer (CRC)\(^3\)
• Efforts to develop a drug targeting aberrant Ras function have been notably unsuccessful, but insights into the structure, function, and signaling of K-Ras have led to renewed optimism\(^4\)
• **This review highlights progress in the development of new agents directly or indirectly targeting K-Ras in CRC and pancreatic cancer.** The next slide depicts the wide-ranging strategies under investigation.

STRATEGIES FOR TARGETING K-RAS

K-Ras inhibitors
ARS-1620 (G12C)
SML-8-73-1 (G12C)
Compound 3144 (G12D)
Kobe0065/2602 (RasGTP)
RT11 (RasGTP)

KRAS mRNA inhibitors
Anti-KRAS U1 Adaptor
AZD-4785
siG12D-LODER™
siG12D exosomes

MEK inhibitors
Binimetinib
Cobimetinib
PD-0325901
Pimasertib
RG-7304
Selumetinib
Trametinib

Raf dimer inhibitors
BGB-283
HM-95573
LXH-254
LY-3009120
RG-7304
TAK-580

ERK inhibitors
ERK inhibitors

PI3K inhibitors
Alpelisib
Buparlisib
Pic替lisib

PI3K/mTOR inhibitors
Dactolisib
Omisalisib
Voxalisib

Adapted from Zeitouni D, et al. Cancers (Basel) 2016 Apr 18;8(4).pii:E45, under the terms of the Creative Commons Attribution License (CC BY 4.0).
TARGETING THE MAPK PATHWAY: RAF, MEK and ERK

- **RAF**: Selective B-Raf inhibitors (e.g. vemurafenib) can stimulate the growth of RAS-mutant tumors,\(^1,2\) but pan-Raf inhibitors may have potential in KRAS-mutant CRC\(^3\)
 - Phase 1: BGB-283, HM-95573, LY-3009120, LXH-254, TAK-580
- **MEK**: Resistance to MEK inhibitors limits their use as monotherapy.\(^4\)
 Numerous trials are testing strategies for combined inhibition:
 - Dual MAPK targets (e.g. MEK + C-Raf)
 - Inhibition of MEK plus growth factor receptors, PI3K signaling molecules or novel targets
- **ERK**: Phase 1 trials are investigating ulixertinib in pancreatic cancer and LY-3214996 in RAS-mutant CRC and pancreatic cancer

MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol 3-kinase

TARGETING THE PI3K PATHWAY

• Agents targeting **PI3K, Akt** and/or **mTOR** have been largely disappointing, perhaps due to resistance mechanisms\(^1\),\(^2\)
 • These may include negative feedback loops, compensatory networks and cross-talk between signaling pathways\(^1\)
• Preclinical studies provide support for **dual inhibition of the MAPK and PI3K pathways** in **KRAS**-mutant CRC and pancreatic cancer,\(^3\),\(^4\) but early clinical results are not promising\(^5\)-\(^9\)
 • Pancreatic cancer patients randomized to the MEK inhibitor selumetinib plus the Akt inhibitor MK-2206 had significantly worse overall survival versus patients randomized to chemotherapy (median 3.9 vs 6.7 months)\(^9\)

mTOR, mammalian target of rapamycin

IMMUNOTHERAPY

- Peptides derived from mutant K-Ras have the potential to be used as ‘neoantigen’ targets for immunotherapy, a strategy that has been actively pursued in pancreatic cancer1
- Commercially developed \textbf{Ras peptide vaccines} include GI 4000 (phase 2 trial completed),2,3 TG014,5 and TG02
 - Promising long-term survival and immune response was reported in patients vaccinated after pancreatic cancer resection2-4
- \textbf{Adoptive T-cell therapy} using Ras-specific lymphocytes resulted in a clinically meaningful response in a patient with metastatic CRC6

NOVEL APPROACHES

- **MEK inhibitors** combined with new targeted agents
 - **Cyclin-dependent kinase inhibitors**: preclinical activity against KRAS-mutant CRC and pancreatic tumors;\(^1\)\(^-\)\(^3\) clinical trial of trametinib plus ribociclib initiated
 - **Navitoclax** (anti-apoptotic protein BCL-XL inhibitor): significant preclinical efficacy;\(^4\) clinical trial of trametinib plus navitoclax in KRAS-mutant CRC and pancreatic cancer ongoing

- **Targeting integrin signaling** demonstrated preclinical activity against pancreatic cancer xenografts in mice\(^5\),\(^6\)

- **Targeting nuclear export**
 - Selinexor, an exportin-1 (XPO1) inhibitor, showed synergistic activity with gemcitabine in a mouse pancreatic cancer model\(^7\)
 - Clinical trials are now evaluating selinexor combined with chemotherapy in mCRC and pancreatic cancer

Dr. Antoine Lacombe
Pharm D, MBA
Phone: +41 79 529 42 79
antoine.lacombe@cor2ed.com

Dr. Froukje Sosef
MD
Phone: +31 6 2324 3636
froukje.sosef@cor2ed.com